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A solution of the plane problem in the theory of elasticity of the stressed state of a half-plane with a step, at an arbitrary internal 
point of which a concentrated force is applied, is presented. The solution is constructed by the method of Cauchy-type integrals, 
developed by Muskhelishvili. A Koppenfels function is used for the conformal mapping of the half-plane with a step into a half- 
plane. Graphs of the distribution of the maximum shear stresses in the neighbourhood of the point of application of the force 
and the trajectories of the principal tensile stresses are presented. Being exact and expressed in terms of elementary functions, 
the solution presented can be used as a test problem to debug numerical solutions as well as a component part of software packages 
for computer aided calculations and the optimization of constructive solutions of supports, sunk into inclines. 0 2003 Elsevier 
Science Ltd. All rights reserved. 

The problem of the stress-strain state of a half-plane with a step when subjected to an internal con- 
centrated force arises in calculations of the strength of supports, sunk into the ground, of floating 
hydrotechnical installations which are kept floating using cables fured on the coastal incline by horizontally 
extended anchors and, also, of extended anchor mountings of cable cranes, suspended cable ways, 
suspension bridges, aerial networks and other installations on slopes and inclines. 

In the case of a homogeneous ground, the model of a linearly deformable medium can be used to 
determine the stress-strain state of inclines. 

The solution of the problem of the stressed state of an elastic half-plane with a rectilinear boundary 
(without a step), at an internal point of which a concentrated load is imposed on the imaginary axis, 
was constructed for the first time by Melan [l]. 

1. FORMULATION OF THE PROBLEM 

A statically applied concentrated force F, = F1 + iFy (i is the square root of -1) acts, as shown in 
Fig. 1, at a point z. = x0 + iyo in a half-plane with a step of height h with an angle of inclination 7cc 
(c = p/q, where p and q are integers and p c q). There are no loads on the external faces of the half- 
plane with a step. The material of the half-plane is characterized by its Young’s modulus E and Poisson’s 
ratio v. It is required to find the stress distribution in the half-plane with a step. 

The solution of this problem will obviously also hold for a problem involving the action in an elastic 
half-space with a terrace of a load F, which is distributed along a line perpendicular to the xOy plane. 
In this case, there will not be a plane stressed state but plane deformation. 

Note that the mirror image of the upper half-plane with a step in the x axis is shown in Fig. 1, since 
the conformal mappingz = o(c) of the upper half-plane with a step into the upper half-plane < is used 
in the solution presented below. Apart from the boundary of the step (the heavy dashed line inx0, y0 
coordinates), several coordinate lines 11 = const of the curvilinear system of coordinates are shown in 
Fig. 1. ’ 

2. METHOD OF SOLUTION 

The problem has an exact analytical solution which can be constructed by the method of Cauchy-type 
integrals [2]. 
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Fig. 1 

We conformally map the domain z of the step into the half-plane 5 by means of the functions 

w(tJ = A 
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(2.1) 

$=(l-~-i)“q, <>O; 

t, = exp(;?nti/q), n = 0, 1, 2, . . . . q - 1 

(s is a function which maps the angular domain into the half-plane and t, are the roots of the nth power 
of unity). 

Function (2.1) was obtained for the first time [3] using the Christoffel - Schwarz formula for rectilinear 
polygons. However, an inaccuracy slipped into the expression for this function. Later, on the basis of 
[3], function (2.1) was constructed again [4] and the inaccuracy was removed. 

The mapping (2.1) can be considered as the introduction into the z plane of a curvilinear system of 
coordinates 5 = 5(x, y), n = n(x, y): 

z=x+iy, (=k+iq, c=Q(z), k=ReR(z), n=ImR(z) 

where Q(z) is a function which is the inverse of o(i). 
It is not possible to construct an expression for Q(z) in terms of elementary functions and it is therefore 

henceforth assumed that the function &2(z) is specified in tabulated form. 
On the whole, the problem will be solved if the two complex potentials Q(c) and ‘I’(<) are found 

which satisfy the boundary condition on the free surface of the step when q = 0. 
The relation &, = Q(q) corresponds to the application of a force F, in the 5 plane at the point z,), 

and the expression [2] 

w’(r> Fs=Fg+iF,, =- 
I WJ I 

(F, + iFy) (2.2) 

corresponds to the force itself. 
The solution of the problem for a concentrated force in the whole z plane is known [Z]; in the 

curvilinear system of coordinates (5, r& this solution has the form 
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X= 

3-4v 

(2.3) 

(the coefficient x takes the value in the upper row in the case of a plane stressed state and the value in 
the lower row in the case of plane deformation). 
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We will henceforth omit the index < in the notation for the force P. 
The stresses 05, cr,,, zerl in the curvilinear system of coordinates (5, n) are given by the Kolosov- 

Muskhelishvili formulae [2,5], from which follows an expression for the stress vector o,, + iqq, acting 
on the coordinate line rl = const, and for the vector conjugate to it 

The concentrated force, applied at the point co = Q(za), creates stresses on the surface of the step 
q = 0 which can be determined using expressions (2.4) when < + t = 4 + Oi, that is, TJ -+ 0, 

(2.5) 

In order to solve the problem, it is necessary to “remove” the stresses on the line TJ = 0 o$@, ~8, 
which are determined by one of the formulae (2.5) that is, to find the potentials CD*(<), Y*(c) which 
cause stresses -(of) + kg) or -(or’ - iTg)) on the line q = 0. 

The solution of the problem will then be found as a superposition of the potentials (I+, Yi and 0*, 
Y*. 

We find the auxiliary potentials CL(<) and Y,(<) f rom the boundary conditions corresponding to 
expressions (2.5) 

A,(t)+ B,(t) = -(of’ + kg), A,(t)+B,(t) = -(of)’ -if:‘) (2.6) 

(the expressions for the functions A*(t) and B*(t) are obtained from the expressions for the functions 
A,(t) and B,(t) (2.4) by replacing the subscripts 1 in their right-hand sides by the subscripts *). 

On multiplying each term of the second expression of (2.6) by 1/[2ni(t - <)I and integrating between 
infinite limits along the line n = 0, we obtain a sum of Cauchy-type integrals 

(2.7) 

where 5 is a point of the half-plane t-l > 0. 
Assuming that (D*(t) is the boundary value of the required function <p*(c), which is homomorphic 

when TJ > 0 and vanishes at infinity and that A*(t) and B*(t) are the boundary values of the functions 
A,(<) andB*(Q, h h w ic are homomorphic when 11 c 0 and vanish at infinity, we obtain from relation 
(2.7) using Cauchy’s formula and its corollaries for the half-plane 11 > 0, 

@*(<)=- xp (20 - z,>F w3-&I+ (w3-4),>* (2.8) 

(the second expression of (2.4) and expressions (2.3) have been taken into account). 
In order to construct the function Y*(c), we use the first boundary condition of (2.6) and rewrite it 

in the form 

-O(t) Wt)+@*(f)+ (Ja) yaq(t)+y 
6) (1) c-l 0) 

Y*(r)+(o’,O’+iT~)=O (2.9) 

Multiplying each term of (2.9) by 1/[2m’(t - <)I and integrating between infinite limits along the line 
n = 0, we obtain a sum of Cauchy-type integrals and, from Cauchy’s formula and its corollaries for the 
half-plane TJ > 0, the fourth term on the left-hand side of this sum is expressed by the homomorphic 
function 

A,(t)+y W) @Z(f) L 
0 0) 1 1 t-5 (2.10) 
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We also calculate-right-hand side or relation (2.10) as in the case of the function Q*(c). 
The factor o’(~)/o’(<) on the left-hand side of relation (2.10) when c + t is equal to unity. 

In fact, differentiating the mapped function (2.1) with respect to <, we obtain an expression for o’(c) which, 
when 6 -+ t, becomes a real function, since it either preserves its form or is supplemented by complex-conjugate 
terms in a pairwise manner, which give a real function in the sum. 

For example, for steps with angles of inclination nc = n/2, rt/3, rt/4 and n/6 (p = I), we have 

(2.11) 

(2.12) 

(2.13) 

x&l i 1 

% 
, a = 0.5 + 0.8661 (2.14) 

Functions (2.11)-(2.13) retain their form on putting 5 = t, becoming real, and function (2.14) becomes real by 
virtue of the fact that the fourth and eighth terms, as well as the fifth and seventh terms on the right-hand side -i-- are pairwise complex-conjugate. Hence, if p and g are integers and p < q, then CO (t) = (O(t). 

Taking the equality w’(t) = m(t) into account, from relation (2.10) we find 

The superposition of the potentials CD1 and CD*, Y, and ‘I’* gives the solution of the problem 

P+ z(j -20 
(WJ - z’ I2 

F 

Y(C)= -2, x + 
[ 

1 
<o(cJ - zo j2 (W<> - zo j2 1 P+ 

(2.15) 

(2.16) 

Substitution of expressions (2.15) and (2.16) when < -+ t into the first boundary condition of (2.5) 
makes its right-hand side vanish, which confirms the correctness of the solution. 

3. THE STRESS DISTRIBUTION 

The stressed state of the step in the curvilinear system of coordinates (5, n) is given by the formulae 

40 = W.> + -9 l &t;) = - 
NC) 

Gxkwr> + ~‘wt~)l 

(3.1) 

o5 = WA(<) - %)I, q, = WA(C) + NOI, qn = Im NZJ 

Using the Kolosov-Muskhelishvili formulae, the principal stresses ol and cr?, the maximum shear 
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Fig. 2 

Fig. 3 

stress z,,, , the intensity of the normal stresses oi, and the octahedral normal stresses boa and shear 
stresses zoCt can be expressed in terms of the potentials CD(<) and Y(c) as follows: 

01 = A(<)+ t @<I 1, ~2 = A(& 1 NC,) I, ‘T,, = 1 B(() 1 

Oi d =--L (a, -cQ2 +(cJ2 -cQ2 +(a, -a$ (3.2) 
- 

42 
0 ocl TN1 =TOi 

In the case of plane strain, the third principal stress is defined as cr3 = v(oi + 02). 
It can be seen that the stress fields oi and T,,,~ are similar to one another; by substituting o3 = 

v(q + 02) into the fourth expression of (3.2) it can be shown that the stress fields Oi and q,,, are 
extremely close to one another and that the field crWt is similar to the field 03. 

To construct any of the stress fields, it is necessary to introduce a mesh of rectangular coordinates 
b, nrn in the half-plane c > 0 which, by means of the function (2.1), is transformed into the mesh of 
curvilinear coordinates xk m = Re a&, n,), yk,, = Im @?,k, &) on the step. At the mesh points &, 
nm in the half-plane < > d, it is possible, using expressions (2.15) and (2.16), to calculate the potentials 
@ and Y, and all of the stresses using expressions (3.1) and (3.2). The calculated stresses act at the 
mesh points of the mesh Xk,m, yk,, of the curvilinear coordinates of the step. 

The truncated spatial graph of the distribution of the maximum shear stresses r,,,, is shown in Fig. 2 
in the local rectangular system of coordinates for the following initial data: height of step h = 1 m, 
angle of inclination of the face EC = 7r/4 (p = 1, q = 4), Poisson’s ratio of the step material v = 0.25, 
the concentrated force has the components F, = 20 kN, FY = 5 kN, and the coordinates of the point 
of application of the force is .x0 = -1.191 m, yo = XC381 m. The point co = -0.05 + 0.05i corresponds 
to the point of application of the force zo = -1.191-0.881i in the < plane and the force Fc = 1.092 + 
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0.066i corresponds to the concentrated force F, = 1.061 + 0.2651. The graph of z,, is truncated using 
the arbitrary quantity zlo which is equal to ten times the mean value of the maximum shear stresses at 
the mesh points of the calculated domain of the step: zlo = lo?,,, i,, is the mean value. At those 
points of the step where the stresses z,, exceeds the values tls they are equated to these values. 

A contour map of the levels of the maximum shear stresses rmax, constructed in the Z,, n plane in the 
neighbourhood of the point of application of the force F,, is shown in Fig. 3. The lines of equal values 
are numbered in units of kPa. The contour map of the levels enables one to estimate the position and 
dimensions of the zone of stress concentration. 

A combined consideration of graphs 2 and 3 enables us to conclude that the concentrated force has 
a substantial effect on the stressed state of the step in the neighbourhood of its point of application, 
giving rise to a stress concentration in the immediate vicinity of the point of application and, also, in 
the neighbourhood of the upper corner point. The zone of the effect of the concentrated force is 
stretched in the direction of the action of the force. The size of the zone of influence depends on the 
magnitude of the concentrated force, the coordinates of its point of application, the geometry of the 
step (the height and angle of inclination of the face) and, also, on Poisson’s ratio of the step material. 

4. TRAJECTORIES OF THE PRINCIPAL STRESSES 

As an example of the use of the solution, we will construct the trajectories of the principal stresses in 
the step due to the action of an internal concentrated force. The pattern of the trajectories of the principal 
stresses (that is, of the lines, the tangents of which coincide with the directions of the principal stresses) 
gives a clear representation of the structure of the stressed state, allowing one, for example, to indicate 
the directions of possible cracks. 

In the plane problem, the direction cosines 11, , (‘) nr’ of the normals to the planes of the principal stresses 
are determined by the system of equations 

(06 -o&l,“’ + Thn:k’ = 0, r,Enn,‘k’ + (04 - a,)n, (k) = 0 

(4.1) 
[fl;k)]2 +[djk']* = I; k = 1,2 

If it is assumed that ny’ = cos ok, nf’ = sm a,, then each of the first two equations of (4.1) gives an 
expression for tg ok. Since tg ok = dqk/d& we have the first-order differential equation 

drll,/d5=(a,-05)/~fStl=~~rl/((Jk-~'1), k=1,2 (4.2) 

for constructing the trajectories of the principal stresses. 
By specifying the initial values qr) on the coordinate line 5 = to, it is possible to construct the integral 

curves of Eq. (4.2), starting out from the points ko, $). By changing the right-hand side of Eq. (4.2) 
during the integration, it is possible to monitor the correctness of the construction of the trajectories 
of the principal stresses. 

The right-hand side of Eq. (4.2) is a complex function of a complex variable which has large gradients 
close to singular points and, because of this, it is impossible to use standard programs for numerical 
integration. 

We wrote a program for integrating this equation in which the initial segment of the integral curve 
is constructed by a fourth-order Runge-Kutta method with a variable step size [6,7] modified by Merson 
[8]; the remaining part of the integral curve is found using the “predictor-corrector” method [7,8] which 
is also of the fourth-order of accuracy with a variable step size. 

The trajectories of the principal tensile stresses ol, constructed using the same initial data as for the 
graphs in Figs 2 and 3, are presented in Fig. 4 (here, as in Fig. 1, the neighbourhood of the step is the 
mirror image in the x axis). The ordinates of the initial points of the integral curves, which in Fig. 4 are 
given the numbers 1, 2, . . ., 6, had the values (the abscissa 5 is fixed) 

5 = to = -0.5, q'R' = 0.2% (n = 1,2,...,6) 

It can be seen from Fig. 4 that the directions of the trajectories o1 in the vicinity of the step surface 
are, on the whole, parallel to the step contour and there are deviations beyond the limits of the inclined 
face of the step. This enables us to assume that the force F, gives rise to cracks on the surface of a step 
made of a brittle material, the direction of which is perpendicular to the step contour. 
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Fig. 4 

The principal stresses q, as well as the directions of the maximum shear stresses q,,, are shown at 
the two points (M, and M2) on the trajectory emerging from the initial point (co = -0.5, $’ = 0.25). 
The directions of z,, at the point M,, which is located in the vicinity of the inclined face of the step, 
make an angle of about 45” with it, and the directions of z,,, at the point M2, which is located in the 
vicinity of the lower corner of the step, make an angle of about 60” with its lower face. This enables us 
to postulate that the force F, gives rise to shears on the surface of a step made of a plastic material, 
the direction of which is parallel to the direction of action of the force. 

Hence, in the case of steps made of a brittle material, a concentrated force can lead to the occurrence 
of cracks which are directed perpendicular to the contour of the step while, in the case of steps made 
of a plastic material, it can lead to the appearance of shears in the direction of action of the force. 
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